大学高数旋转体体积 高等数学旋转体体积?

时间:2021-09-17 12:00:42 作者:admin 19535
大学高数旋转体体积 高等数学旋转体体积?

高等数学旋转体体积?

求由x轴与y=lnx,x=e所围图形绕x=e旋转一周所得旋转体的体积。 解: 你可能没搞明白这种计算方法的实质含意。其运算原理是这样的:在旋转体上距y轴的距离 为x处取一厚度为dx,旋转半径为(e-x)的薄壁园筒,园筒的高度y=lnx;此薄壁园筒的微体 积dV=2π(e-x)lnxdx;故总体积V: 【在你的计算式中,只有园筒的高度和厚度,没有旋转半径,因此算出来的是你画阴影线的截面的面积,而不是该面积绕轴x=e旋转出来的体积,所以是错的。】

大家觉得大学里的《高等数学》难学吗?难在哪部分?

以我的实际经历来看,高等数学确实很难。我高中数学很好,一般也在130-140,上大学之后也感觉数学比较难。费了九牛二虎之力,虽然后面能考到95 ,但是感觉很吃力,而且我自己能够感觉到掌握的不好。到后面考研的时候又重新复习。我认为最大的问题是学习方法变了,高中数学是天天学,各种刷题,而到了大学,基本只有课堂作业按时完成,非常认真的同学最多会找一份试卷去做,所以练习量少了,少了很多很多。所以,想学好高等数学,必须自觉加大练习量。但是,因为大学的课程基本上都不是这种学习状态,所以感觉高数很难!其次就是要有思考,高数的题目还是很活的,但是由于高中很多问题,陷阱老师都会帮你考虑到,但是大学的老师只会简单给你过一遍,你需要仔细思考每章节的联系,陷阱。比如连续,可微,可导等等概念的区别和联系。各种积分方式针对的题型是啥!自己要学会归纳总结!我后面考研的事情,几倍的增加训练量,然后深度思考了很多,后面找到当年高考数学的感觉,考了138,感觉还行,确实那年最后一道证明题太难了,服。个人建议大家学习的时候买一本考研数学的大部头书来看,可以用李永乐老师的,也是分章节介绍的,加大训练量,加深思考,用以前高中的思维去学习,与大学其他科目不一致,即可学好!

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关推荐